A Sampling of IMPACT Research: Methods for Analysis with Dropout and Identifying Optimal Treatment Regimes

Marie Davidian Department of Statistics North Carolina State University

http://www.stat.ncsu.edu/~davidian

Outline

- Overview: Projects 2 and 5
- Methods for primary and longitudinal analyses in the presence of dropout
- Identifying optimal treatment regimes from a restricted, feasible set
- Computational Resource and Dissemination Core

Overview

IMPACT:

- *P01 Program Project* grant from NCI
- Five research projects
- Three *cores*

Focus here: Research being carried out in *two* of the projects

- Project 2: Methods for Missing and Auxiliary Covariates in Clinical Trials
- Project 5: Methods for Discovery and Analysis of Dynamic Treatment Regimes

NC STATE UNIVERS

• *Of necessity* : Simplest cases

Project 2

Specific aims:

- 1. Improving efficiency of inferences in randomized clinical trials using auxiliary covariates
- 2. Methods for primary and longitudinal analyses in the presence of drop-out
- **3**. Diagnostic measures for longitudinal and joint models in the presence of missing data
- 4. Inference for sensitivity analyses of missing data

Doubly robust methods in the presence of dropout

Motivation:

- Subject drop-out is *commonplace* in clinical trials
- Particularly problematic in studies of *longitudinal markers*, e.g., QOL measures, biomarkers
- *Monotone* pattern of missingness

Missing at random (MAR): Probability of drop-out depends only on information *observed prior to drop-out*

- *Likelihood methods*: Do not require specification of drop-out mechanism but do require *correct* full data model
- Inverse weighted methods: Do not require full data model but do require correct drop-out model
- *Doubly robust methods*: Require both, but *only one* need be correct

Doubly robust methods in the presence of dropout

Doubly robust methods:

- Obvious appeal
- But "usual" doubly robust methods can exhibit disastrous performance under "slight" model misspecification (Kang and Schafer, 2007)

Goal: Can *alternative* doubly robust methods be developed that do not suffer this shortcoming?

The simplest setting

Clinical trial:

- Outcome Y, interested in $\mu = E(Y)$
- *Full data*: (Y_i, X_i) , i = 1, ..., n, iid, $X_i = baseline \ covariates$ for subject i
- But Y_i is *missing* for some *i* (e.g., due to *drop-out*)
- Observed data: (R_i, R_iY_i, X_i) , i = 1, ..., n, iid, $R_i = I(Y_i \text{ observed})$

MAR assumption: $R_i \perp \!\!\perp Y_i \mid X_i$, implies

$$\mu = E(Y) = E\{E(Y|X)\} = E\{E(Y|R=1,X)\}$$
(1)

Estimators for μ

Outcome regression estimator: MAR (1) suggests *positing* a model $m(X,\beta)$ for E(Y|X)

$$\widehat{\mu}^{OR} = n^{-1} \sum_{i=1}^{n} m(X_i, \widehat{\beta}) \quad \text{for some} \ \ \widehat{\beta}$$

• By MAR (1), can use *complete cases* with $R_i = 1$; e.g. *least squares*

$$\sum_{i=1}^{n} R_i \{Y_i - m(X_i, \beta)\} m_\beta(X_i, \beta) = 0, \quad m_\beta(X, \beta) = \frac{\partial m(X_i, \beta)}{\partial \beta}$$

• $\widehat{\mu}^{OR}$ consistent for μ if $m(X,\beta)$ is correct

Estimators for μ

Inverse propensity score weighted estimator: Propensity score P(R = 1|X)

• If $\pi(X)$ is the *true* propensity score, by MAR

$$n^{-1}\sum_{i=1}^{n} \frac{R_i Y_i}{\pi(X_i)} \xrightarrow{p} \mu$$

• *Posit* a model $\pi(X, \gamma)$, estimate γ by ML on (R_i, X_i) , $i = 1, \ldots, n$

$$\widehat{\mu}^{IPW} = n^{-1} \sum \frac{R_i Y_i}{\pi(X_i, \widehat{\gamma})}$$

NC STATE UNIVERSI

• $\widehat{\mu}^{IPW}$ consistent for μ if $\pi(X, \gamma)$ is correct

Semiparametric theory

Robins et al. (1994): If the *propensity model* is *correct*, with *no additional assumptions* on the distribution of the data

• All *consistent and asymptotically normal* estimators are asymptotically equivalent to estimators of the form

$$n^{-1}\sum\left\{\frac{R_iY_i}{\pi(X_i,\widehat{\gamma})} + \frac{R_i - \pi(X_i,\widehat{\gamma})}{\pi(X_i,\widehat{\gamma})}h(X_i)\right\} \quad \text{for some function } h(X)$$

• Optimal h(X) leading to smallest variance (asymptotically) is

$$h(X) = -E(Y|X)$$

- Suggests modeling E(Y|X) by $m(X,\beta),$ estimating $\beta,$ and estimating μ by

$$n^{-1}\sum\left\{\frac{R_iY_i}{\pi(X_i,\widehat{\gamma})} - \frac{R_i - \pi(X_i,\widehat{\gamma})}{\pi(X_i,\widehat{\gamma})}m(X_i,\widehat{\beta})\right\}$$
(2)

Double robustness: DR

- Such estimators are *consistent* for μ if *either* model is *correct*
- Kang and Schafer (2007): Simulation scenario where the "usual" DR estimator of form (2) with β estimated by least squares is severely biased and inefficient when m(X, β) and π(X, γ) are only "slightly" misspecified or some π(X_i, γ̂) are close to 0
- $\hat{\mu}^{OR}$ performed *much better*, even under *misspecification* of $m(X,\beta)$

Key finding: With DR estimators, the method for estimating β matters

- The method that is best for estimating β is not best for estimating μ
- Instead: Find an estimator for β that minimizes the (large sample) variance of DR estimators of form (2)...

Idea: Assume $\pi(X)$ fixed (no unknown γ) and consider estimators

$$n^{-1} \sum \left\{ \frac{R_i Y_i}{\pi(X_i)} - \frac{R_i - \pi(X_i)}{\pi(X_i)} m(X_i, \beta) \right\} \text{ indexed by } \beta$$
 (3)

If π(X) is correct but m(X, β) may not be, all estimators of form (3) are consistent with asymptotic variance

$$\operatorname{var}(Y) + E\left[\left\{\frac{1 - \pi_0(X)}{\pi_0(X)}\right\} \{Y - m(X,\beta)\}^2\right]$$
(4)

• *Minimize* (4) in $\beta \Longrightarrow \beta^{opt}$ satisfies

$$E\left[\left\{\frac{1-\pi_0(X)}{\pi_0(X)}\right\}\left\{Y-m(X,\beta^{opt})\right\}m_\beta(X,\beta^{opt})\right]=0$$
 (5)

NC STATE UNIVERSI

• Find an estimator $\widehat{\beta} \xrightarrow{p} \beta^{opt}$ under these conditions and $\widehat{\beta} \xrightarrow{p} true \beta_0$ if $m(X,\beta)$ is correct even if $\pi(X)$ is not

Result: Instead of estimating β by *least squares* solving

$$\sum_{i=1}^{n} R_i \{ Y_i - m(X_i, \beta) \} m_\beta(X_i, \beta) = 0,$$

estimate β by a form of weighted least squares solving

$$\sum_{i=1}^{n} R_{i} \left\{ \frac{1 - \pi(X_{i})}{\pi^{2}(X_{i})} \right\} \{ Y_{i} - m(X_{i}, \beta) \} m_{\beta}(X_{i}, \beta) = 0$$
 (6)

- Estimating equation (6) has *expectation* (5) when $\pi(X)$ is *correct*
- The resulting $\widehat{\beta}$ satisfies the required conditions
- Can be *generalized* to case of $\pi(X, \gamma)$ with $\widehat{\gamma}$ (ML)
- All this extends to *more general* μ (e.g., treatment effect)

Details: My website and

Cao, W., Tsiatis, A.A. and Davidian, M. (2009). Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. *Biometrika* **96**, 723–734.

• The DR estimator using this $\hat{\beta}$ greatly improved on the "usual" DR estimator and exhibited superior performance (to $\hat{\mu}^{OR}$) in the Kang and Schafer and other scenarios

Longitudinal study

Extension: Longitudinal study with *drop-out*

- *Ideally*: Collect data L_j at time t_j , $j = 1, \ldots, M + 1$
- Full data: $\overline{L} = \overline{L}_{M+1} = (L_1, \dots, L_{M+1})$
- Dropout: If subject is last seen at time t_j , dropout indicator D = j, observe only $\overline{L}_j = (L_1, \dots, L_j)$
- Observed data: iid $(D_i, \overline{L}_{D_i})$, $i = 1, \ldots, n$
- Interest: Parameter μ in a semiparametric model for the full data
- Full data estimator for μ : Solve

$$\sum_{i=1}^{n} \varphi(\overline{L}_i, \mu) = 0, \quad E\{\varphi(\overline{L}, \mu)\} = 0$$

- MAR: $pr(D = j | \overline{L})$ depends only on \overline{L}_j , j = 1, ..., M + 1
- Drop-out model: $pr(D = j | \overline{L}) = \pi(j, \overline{L}_j), \ \pi(M + 1, \overline{L}) = \pi(\overline{L})$

Longitudinal study

If drop-out model correct: All consistent and asymptotically normal estimators for μ solve

$$\sum_{i=1}^{n} \left\{ \frac{I(D_i = M+1)\varphi(\overline{L}_i, \mu)}{\pi(\overline{L}_i)} + \sum_{j=1}^{M} \frac{dM_{ji}(\overline{L}_{ji})}{K_{ji}(\overline{L}_{ji})} \mathcal{L}_j(\overline{L}_{ji}) \right\} = 0$$

• $dM_{ji}(\overline{L}_{ji})$, $K_{ji}(\overline{L}_{ji})$ are functions of $\pi(j, \overline{L}_j)$

- These estimators are *DR*
- Optimal $\mathcal{L}_j(\overline{L}_j) = E\{\varphi(\overline{L},\mu)|\overline{L}_j\}$; model by $\mathcal{L}_j(\overline{L}_j,\beta)$, $j = 1, \dots, M$

Result: Can derive *optimal* estimator for β by analogy to the previous

Tsiatis, A.A., Davidian, M. and Cao, W. (2011). Improved doubly robust estimation when the data are monotonely coarsened, with application to longitudinal studies with dropout. *Biometrics* **67**, 536–545.

NC STATE UNIVERSI

Sampling of IMPACT Research

Project 5

Specific aims:

- 1. Learning methods for optimal dynamic treatment regimes
- 2. Identifying optimal dynamic treatment regimes from a restricted, feasible set
- 3. Inferential methods for dynamic treatment regimes
- 4. Design of sequentially randomized trials for dynamic treatment regimes

Optimal treatment regimes from a feasible set

Motivation: *Individualized* (*personalized*) treatment

- *Premise*: Different subgroups of patients may respond *differently* to treatments
- Treatment decisions *tailored* to individual patients based on their *characteristics*, *disease status*, *medical history*, etc
- *Ideally*: Use *all* relevant information in *decision rules*
- *Realistically*: Use a key subset of information *feasibly* collected in *clinical practice*, simple-to-implement, *interpretable* decision rules

Goal: Methods for estimating such *feasible dynamic treatment regimes* from data from *clinical trials* or *observational databases*

The simplest setting

A single decision: Two treatment options

- Observed data: (Y_i, X_i, A_i) , $i = 1, \ldots, n$, iid
- Y_i outcome, X_i baseline covariates, $A_i = 0, 1$

Treatment regime: A function $g: X \to \{0, 1\}$

- Simple example: $g(X) = I(X \le 50)$
- $g \in \mathcal{G}$, the class of *all* such regimes
- *Optimal regime*: If followed by *all patients* in the population, would lead to *best average outcome* among all regimes in *G*

Potential outcomes

Formalize: $Y^*(1) =$ outcome if patient were to receive 1; similarly $Y^*(0)$

- *Thus*, $E\{Y^*(1)\}$ is the *average outcome* if *all patients* in the population received 1; similarly $E\{Y^*(0)\}$
- Assume we observe $Y = Y^*(1)A + Y^*(0)(1 A)$
- Assume Y*(0), Y*(1)⊥⊥A|X (no unmeasured confounders); automatic in a randomized trial

•
$$\implies E\{Y^*(1)\} = E\{E(Y|A=1,X)\}; \text{ similarly } E\{Y^*(0)\}$$

• For any $g \in \mathcal{G}$, define

$$Y^*(g) = Y^*(1)g(X) + Y^*(0)\{1 - g(X)\}$$
(1)

NC STATE UNIVERS

• Optimal regime: Leads to largest $E\{Y^*(g)\}$ among all $g \in \mathcal{G}$; i.e.,

$$g^{opt}(X) = \arg \max_{g \in \mathcal{G}} E\{Y^*(g)\}$$

Optimal regime

(1):
$$E\{Y^*(g)\} = E\left[E(Y|A=1,X)g(X) + E(Y|A=0,X)\{1-g(X)\}\right]$$

 $g^{opt}(X) = I\{E(Y|A=1,X) - E(Y|A=0,X) \ge 0\}$

- Thus: If E(Y|A, X) is known can find g^{opt}
- Posit a model $\mu(A, X, \beta)$ for E(Y|A, X) and estimate β based on observed data $\Longrightarrow \hat{\beta}$
- Estimate g^{opt} by $\widehat{g}^{opt}(X) = I\{\mu(1, X, \widehat{\beta}) \mu(0, X, \widehat{\beta}) \ge 0\}$
- "Regression estimator"
- But: $\mu(A, X, \beta)$ may be misspecified, so \widehat{g}^{opt} could be far from g^{opt}

Alternative perspective: $\mu(A, X, \beta)$ defines a *class* of regimes, *indexed* by β , that may or may not contain g^{opt}

• But may be *feasible* and *interpretable*

Optimal restricted regime

For example: Suppose in truth

$$E(Y|A, X) = \exp\{1 + X_1 + 2X_2 + 3X_1X_2 + A(1 - 2X_1 + X_2)\}$$

$$\implies g^{opt}(X) = I(X_2 \ge 2X_1 - 1)$$

- Posit $\mu(A, X, \beta) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + A(\beta_3 + \beta_4 X_1 + \beta_5 X_2)$
- Defines *class* \mathcal{G}_{η} with elements

 $I(X_2 \ge \eta_1 X_1 + \eta_0) \cup I(X_2 \le \eta_1 X_1 + \eta_0), \quad \eta_0 = -\beta_3/\beta_5, \ \eta_1 = -\beta_4/\beta_5$

Thus, in general: Consider *class* $\mathcal{G}_{\eta} = \{g(X, \eta)\}$ *indexed* by η

- Write $g_{\eta}(X) = g(X, \eta)$
- Optimal restricted regime $g_{\eta}^{opt}(X) = g(X, \eta^{opt})$,

$$\eta^{opt} = \arg \; \max_{\eta} E\{Y^*(g_\eta)\}$$

NC STATE UNIVERS

Optimal restricted regime

Approach: *Estimate* η^{opt} by maximizing a "good" (*DR*) estimator for $E\{Y^*(g_\eta)\}$

• Missing data analogy: "Full data" are $\{Y^*(g_\eta), X\}$; "observed data" are $(C_\eta, C_\eta Y, X)$, where

$$C_{\eta} = Ag(X, \eta) + (1 - A)\{1 - g(X, \eta)\}$$

• $\pi(X) = pr(A = 1|X)$; *known* in a randomized trial; otherwise *model* and *estimate* $\pi(X, \widehat{\gamma})$

•
$$\pi_c(X) = \operatorname{pr}(C_\eta = 1|X) = \pi(X)g(X,\eta) + \{1 - \pi(X)\}\{1 - g(X,\eta)\}$$

PAC

Optimal restricted regime

Estimator for $E\{Y^*(g_\eta)\}$:

$$n^{-1}\sum_{i=1}^{n} \left\{ \frac{C_{\eta,i}Y_i}{\pi_c(X_i,\widehat{\gamma})} - \frac{C_{\eta,i} - \pi_c(X_i,\widehat{\gamma})}{\pi_c(X_i,\widehat{\gamma})} m(X_i,\widehat{\beta},\eta) \right\}$$
(2)

 $m(X,\beta,\eta) = \mu(1,X,\beta)g(X,\eta) + \mu(0,X,\beta)\{1 - g(X,\eta)\}$

- Consistent if either $\pi(X, \gamma)$ or $\mu(A, X, \beta)$ is correct
- Maximize (2) in η to obtain $\hat{\eta}^{opt}$

Current work:

- Approaches to *maximizing* (2)
- *Simulations*: Almost equals performance of *correct* regression estimator and is *superior* with *misspecified* $\mu(A, X, \beta)$
- Extension to multiple decision points
- Zhang, Tsiatis, Davidian (2011), *in preparation*

Computational Resource and Dissemination Core

Goals:

- Efficient, robust, reliable code implementing project methodology
- Creation and dissemination of public-use software (to be made available on the IMPACT website)
- E.g., R packages, SAS macros, specialized implementations (e.g., FORTRAN, c)

Programmers: Scientific programmers at UNC-CH and NCSU dedicated to these activities

